Unipotent representations and microlocalization

نویسندگان

چکیده

We develop a theory of microlocalization for Harish-Chandra modules, adapting construction Losev [Duke Math. J. 159 (2011), pp. 99–143]. explore the applications this to unipotent representations real reductive groups. For representation complex group, we deduce formula restriction maximal compact subgroup, proving an old conjecture Vogan [Associated varieities and representations, Birkhäuser Boston, MA, 1991] in large family cases.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unipotent Automorphic Representations : Conjectures

In these notes, we shall attempt to make sense of the notions of semisimple and unipotent representations in the context of automorphic forms. Our goal is to formulate some conjectures, both local and global, which were originally motivated by the trace formula. Some of these conjectures were stated less generally in lectures [2] at the University of Maryland. The present paper is an update of ...

متن کامل

Unipotent Representations and Quantum Induction

In this paper, we construct unipotent representations for the real orthogonal groups and the metaplectic groups in the sense of Vogan.

متن کامل

Spherical Nilpotent Orbits and Unipotent Representations

then the coadjoint orbits of SL (2,R) fall into three basic classes; according to whether the Casimir function B (Z,Z) = h + xy is positive, negative or zero.(Here Z ≡ x ∗X + h ∗H + y ∗ Y .) The nature of these orbits becomes a little clear if we adopt a basis for which B is diagonal, setting Z0 = X − Y Z2 = X + Y Z3 = H we find B (Z,Z) = −z 0 + z 2 + z 3 That is, the invariant bilinear form on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Representation Theory of The American Mathematical Society

سال: 2023

ISSN: ['1088-4165']

DOI: https://doi.org/10.1090/ert/633